
無人機的飛行原理及控制方法(以四旋翼無人機為例)
四旋翼無人機一般是由檢測模塊,控制模塊,執(zhí)行模塊以及供電模塊組成。檢測模塊實現(xiàn)對當(dāng)前姿態(tài)進(jìn)行量測;執(zhí)行模塊則是對當(dāng)前姿態(tài)進(jìn)行解算,優(yōu)化控制,并對執(zhí)行模塊產(chǎn)生相對應(yīng)的控制量;供電模塊對整個系統(tǒng)進(jìn)行供電。
四旋翼無人機機身是由對稱的十字形剛體結(jié)構(gòu)構(gòu)成,材料多采用質(zhì)量輕、強度高的碳素纖維;
在十字形結(jié)構(gòu)的四個端點分別安裝一個由兩片槳葉組成的旋翼為飛行器提供飛行動力,每個旋翼均安裝在一個電機轉(zhuǎn)子上,通過控制電機的轉(zhuǎn)動狀態(tài)控制每個旋翼的轉(zhuǎn)速,來提供不同的升力以實現(xiàn)各種姿態(tài);
每個電機均又與電機驅(qū)動部件、中央控制單元相連接,通過中央控制單元提供的控制信號來調(diào)節(jié)轉(zhuǎn)速大?。?/span>
IMU慣性測量單元為中央控制單元提供姿態(tài)解算的數(shù)據(jù),機身上的檢測模塊為無人機提供了解自身位姿情況最直接的數(shù)據(jù),為四旋翼無人機最終實現(xiàn)復(fù)雜環(huán)境下的自主飛行提供了保障。
現(xiàn)將位于四旋翼機身同一對角線上的旋翼歸為一組,前后端的旋翼沿順時針方向旋轉(zhuǎn),從而可以產(chǎn)生順時針方向的扭矩;而左右端旋翼沿逆時針方向旋轉(zhuǎn),從而產(chǎn)生逆時針方向的扭矩,如此四個旋翼旋轉(zhuǎn)所產(chǎn)生的扭矩便可相互之間抵消掉。由此可知,四旋翼飛行器的所有姿態(tài)和位置的控制都是通過調(diào)節(jié)四個驅(qū)動電機的速度實現(xiàn)的。
一般來說,四旋翼無人機的運動狀態(tài)主要分為懸停、垂直運動、滾動運動、俯仰運動以及偏航運動五種狀態(tài)。
l懸停
懸停狀態(tài)是四旋翼無人機具有的一個顯著的特點。在懸停狀態(tài)下,四個旋翼具有相等的轉(zhuǎn)速,產(chǎn)生的上升合力正好與自身重力相等,即。并且因為旋翼轉(zhuǎn)速大小相等,前后端轉(zhuǎn)速和左右端轉(zhuǎn)速方向相反,從而使得飛行器總扭矩為零,使得飛行器靜止在空中,實現(xiàn)懸停狀態(tài)。
l垂直運動
垂直運動是五種運動狀態(tài)中較為簡單的一種,在保證四旋翼無人機每個旋轉(zhuǎn)速度大小相等的倩況下,同時對每個旋翼增加或減小大小相等的轉(zhuǎn)速,便可實現(xiàn)飛行器的垂直運動。當(dāng)同時増加四個旋翼轉(zhuǎn)速時,使得旋翼產(chǎn)生的總升力大小超過四旋翼無人機的重力時,即,四旋翼無人機便會垂直上升;反之,當(dāng)同時減小旋翼轉(zhuǎn)速時,使得每個旋翼產(chǎn)生的總升力小于自身重力時,即,四旋翼無人機便會垂直下降,從而實現(xiàn)四旋翼無人機的垂直升降控制。
l翻滾運動
橫滾控制:橫滾是無人機繞機身縱軸(Y軸)旋轉(zhuǎn)的動作。
翻滾運動是在保持四旋翼無人機前后端旋翼轉(zhuǎn)速不變的情況下,通過改變左右端的旋翼轉(zhuǎn)速,使得左右旋翼之間形成一定的升力差,從而使得沿飛行器機體左右對稱軸上產(chǎn)生一定力矩,導(dǎo)致在方向上產(chǎn)生角加速度實現(xiàn)控制的。如圖2.3所示,增加旋翼1的轉(zhuǎn)速,減小旋翼3的轉(zhuǎn)速,則飛行器傾斜于右側(cè)飛行;相反,減小旋翼4,增加旋翼2,則飛行器向左傾斜飛行。
l俯仰運動
俯仰控制:俯仰是無人機繞機身橫軸旋轉(zhuǎn)(X軸)的動作。
四旋翼飛行器的俯仰運動和滾動運動相似,是在保持機身左右端旋翼轉(zhuǎn)速不變的前提下,通過改變前后端旋翼轉(zhuǎn)速形成前后旋翼升力差,從而在機身前后端對稱軸上形成一定力矩,引起角方向上的角加速度實現(xiàn)控制的。如圖2.4所示,增加旋翼3的轉(zhuǎn)速,減小旋翼1的轉(zhuǎn)速,則飛行器向前傾斜飛行;反之,則飛行器向后傾斜。
l偏航運動
偏航控制:偏航是無人機繞垂直軸(Z軸)旋轉(zhuǎn)的動作。
四旋翼的偏轉(zhuǎn)運動是通過同時兩兩控制四個旋翼轉(zhuǎn)速實現(xiàn)控制的。保持前后端或左右端旋翼轉(zhuǎn)速相同時,其便不會發(fā)生俯仰或滾動運動;而當(dāng)每組內(nèi)的兩個旋翼與另一組旋翼轉(zhuǎn)速不同時,由于兩組旋翼旋轉(zhuǎn)方向不同,便會導(dǎo)致反扭矩力的不平衡,此時便會產(chǎn)生繞機身中心軸的反作用力,引起沿角角加速度。如圖2.3所示,當(dāng)前后端旋翼的轉(zhuǎn)速相等并大于左右端旋翼轉(zhuǎn)速時,因為前者沿順時針方向旋轉(zhuǎn),后者相反,總的反扭矩沿逆時針方向,反作用力作用在機身中心軸上沿逆時針方向,引起逆時針偏航運動;反之,則會引起飛行器的順時針偏航運動。
綜上所述,四旋翼無人機的各個飛行狀態(tài)的控制是通過控制對稱的四個旋翼的轉(zhuǎn)速,形成相應(yīng)不同的運動組合實現(xiàn)的。但是在飛行過程中卻有六個自由度輸出,因此它是一種典型的欠驅(qū)動,強耦合的非線性系統(tǒng)。例如,旋翼1的轉(zhuǎn)速會導(dǎo)致無人機向左翻滾,同時逆時針轉(zhuǎn)動的力矩會大于順時針的力矩,從而進(jìn)一步使得無人機向左偏航,此外翻滾又會導(dǎo)致無人機的向左平移,可以看出,四旋翼無人機的姿態(tài)和平動是耦合的。
四旋翼無人機自主飛行的控制
四旋翼無人機的精 確航跡跟蹤是實現(xiàn)無人機自主飛行的基本要求。由于四旋翼無人機自身存在姿態(tài)與平動的耦合關(guān)系以及模型參數(shù)不確定性與外界擾動,因此只有實現(xiàn)姿態(tài)的穩(wěn)定控制才能完成航跡的有效跟蹤。
在四旋翼無人機的自主控制系統(tǒng)中,姿態(tài)穩(wěn)定控制是實現(xiàn)飛行器自主飛行的基礎(chǔ)。其任務(wù)是控制四旋翼無人機的三個姿態(tài)角(俯仰角、滾轉(zhuǎn)角、偏航角)穩(wěn)定地跟蹤期望姿態(tài)信號,并保證閉環(huán)姿態(tài)系統(tǒng)具有期望的動態(tài)特性。由于四旋翼無人機姿態(tài)與平動的耦合特點,分析可以得知,只有保證姿態(tài)達(dá)到穩(wěn)定控制,才使得旋翼總升力在期望的方向上產(chǎn)生分量,進(jìn)而控制飛行器沿期望的航跡方向飛行。而四旋翼無人機的姿態(tài)在實際飛行環(huán)境中會受到外界干擾和不精 確模型的參數(shù)誤差、測量噪聲等未建模動態(tài)對控制效果的影響。所以,需要引入適當(dāng)?shù)挠^測器和控制器對總的不確定性進(jìn)行估計和補償,并對其估計的誤差進(jìn)行補償,來保證四旋翼無人機在外界存在干擾下對姿態(tài)的有效跟蹤。
三軸陀螺儀,三軸加速度計,三軸地磁傳感器和氣壓計組成的一個IMU
飛控系統(tǒng)主要用于飛行姿態(tài)控制和導(dǎo)航,對于飛控而言,首先要知道飛行器當(dāng)前的狀態(tài),比如:三維位置、三維速度、三維加速度、三軸角度和三軸角速度等,總共15個狀態(tài)。
飛控系統(tǒng)最基礎(chǔ)也最難控制的技術(shù)難點,其實是要準(zhǔn)確地感知這一系列狀態(tài),如果這些感知數(shù)據(jù)問題或者有誤差都會導(dǎo)致無人機做一些非正常的動作。目前,無人機一般使用GPS、IMU(慣性測量單元)、氣壓計和地磁指南針來測量這些狀態(tài)。GPS獲取定位、在一些情況下也能獲取高度、速度;IMU主要用來測量無人機三軸加速度和三軸角速度,通過計算也能獲得速度和位置;氣壓計用于測量海拔高度;地磁指南針則用于測量航向。
由于目前傳感器設(shè)計水平的限制,這些傳感器測量的數(shù)據(jù)都會產(chǎn)生一定的誤差,并可能受到環(huán)境的干擾,從而影響狀態(tài)估計的精度。為了保障飛行性能,就需要充分利用各傳感器數(shù)據(jù)共同 融合出具有高可信度的15個狀態(tài),即組合導(dǎo)航技術(shù)。組合導(dǎo)航技術(shù)結(jié)合GPS、IMU、氣壓計和地磁指南針各自的優(yōu)缺點,通過電子信號處理領(lǐng)域的技術(shù),融合多種傳感器的測量值,獲得更精準(zhǔn)的狀態(tài)測量。
組合導(dǎo)航
為了提升航拍無人機的感知能力和飛行性能,除了以上基礎(chǔ)傳感器方案以外,現(xiàn)在主流的無人機產(chǎn)品都加入了先進(jìn)的視覺傳感器、超聲波傳感器和IMU與指南針冗余導(dǎo)航系統(tǒng)。雙目立體視覺系統(tǒng)可根據(jù)連續(xù)圖像計算出物體的三維位置,除了避障功能以外還能提供定位與測速。機身下方的超聲波模塊起到輔助定高的作用,而冗余的IMU和指南針在一個元件受到干擾時,冗余導(dǎo)航系統(tǒng)會自動切換至另一個傳感器,極大提高了組合導(dǎo)航的可靠性。
控制性能
飛控系統(tǒng)先進(jìn)的控制算法為航拍無人機的飛行和操控帶來了很高的控制品質(zhì),比如在普通狀態(tài)下的表現(xiàn)是控制精度高,飛行穩(wěn)定,速度快。高速飛行不僅對動力系統(tǒng)有較高的要求,更重要的是飛控要達(dá)到很高的控制品質(zhì)和響應(yīng)速度,除高速飛行以外,飛行器在懸停和慢速控制上也能達(dá)到很高的精度。
另外,在設(shè)計飛控時,不僅需要考慮到正常飛行狀態(tài)的控制精度,如懸停位置控制精度,姿態(tài)控制精度等,還需要加強了異常飛況的控制品質(zhì)。如在飛行器斷槳、突然受到撞擊、突加負(fù)重或被其他外力干擾后,控制恢復(fù)能力更強,魯棒性較強,能夠應(yīng)對很多極端狀況,這對于飛行安全性來說尤其重要。
故障診斷
在起飛前或飛行過程中,任何微小故障都有可能引發(fā)飛行事故。如果飛控系統(tǒng)能實時不斷地進(jìn)行故障監(jiān)控與故障診斷,就能大幅降低事故發(fā)生的概率。飛控系統(tǒng)可以監(jiān)控諸如振動、電壓、電流、溫度、轉(zhuǎn)速等各項飛行狀態(tài)參數(shù),并通過這些監(jiān)控特征信號進(jìn)行故障診斷。但是這些信號往往是復(fù)雜且沒有明顯規(guī)律的,只有通過對大量故障數(shù)據(jù)進(jìn)行數(shù)據(jù)挖掘,用深度學(xué)習(xí)技術(shù)建立了飛控故障診斷系統(tǒng),采用模式識別判定故障發(fā)生的概率,這套系統(tǒng)才能判定從空中射槳到IMU故障診斷等,對故障進(jìn)行早期預(yù)報,或進(jìn)行應(yīng)急處理,使飛行變得更加安全。
公眾號 掃碼咨詢
![]() | 上海市閔行區(qū)中春路4999號莘莊商務(wù)樓1326室 |
![]() | service@covond.com |
![]() | www.jxetj.com |
![]() | 交換機:18017588179(孫經(jīng)理) 無人機:13311882358(孫總) |